Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38076887

RESUMEN

Pathogen encounter results in long-lasting epigenetic imprinting that shapes diseases caused by heterologous pathogens. The breadth of this innate immune memory is of particular interest in the context of respiratory pathogens with increased pandemic potential and wide-ranging impact on global health. Here, we investigated epigenetic imprinting across cell lineages in a disease relevant murine model of SARS-CoV-2 recovery. Past SARS-CoV-2 infection resulted in increased chromatin accessibility of type I interferon (IFN-I) related transcription factors in airway-resident macrophages. Mechanistically, establishment of this innate immune memory required viral pattern recognition and canonical IFN-I signaling and augmented secondary antiviral responses. Past SARS-CoV-2 infection ameliorated disease caused by the heterologous respiratory pathogen influenza A virus. Insights into innate immune memory and how it affects subsequent infections with heterologous pathogens to influence disease pathology could facilitate the development of broadly effective therapeutic strategies.

2.
Mol Cell ; 83(23): 4255-4271.e9, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37995687

RESUMEN

Endogenous retroviruses (ERVs) are remnants of ancient parasitic infections and comprise sizable portions of most genomes. Although epigenetic mechanisms silence most ERVs by generating a repressive environment that prevents their expression (heterochromatin), little is known about mechanisms silencing ERVs residing in open regions of the genome (euchromatin). This is particularly important during embryonic development, where induction and repression of distinct classes of ERVs occur in short temporal windows. Here, we demonstrate that transcription-associated RNA degradation by the nuclear RNA exosome and Integrator is a regulatory mechanism that controls the productive transcription of most genes and many ERVs involved in preimplantation development. Disrupting nuclear RNA catabolism promotes dedifferentiation to a totipotent-like state characterized by defects in RNAPII elongation and decreased expression of long genes (gene-length asymmetry). Our results indicate that RNA catabolism is a core regulatory module of gene networks that safeguards RNAPII activity, ERV expression, cell identity, and developmental potency.


Asunto(s)
Retrovirus Endógenos , Retrovirus Endógenos/genética , ARN Nuclear , Epigénesis Genética , Heterocromatina , Expresión Génica
3.
Microbiol Spectr ; : e0077623, 2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37676044

RESUMEN

Single-cell RNA sequencing (scRNA-Seq) studies have provided critical insight into the pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19). scRNA-Seq library preparation methods and data processing workflows are generally designed for the detection and quantification of eukaryotic host mRNAs and not viral RNAs. Here, we compare different scRNA-Seq library preparation methods for their ability to quantify and detect SARS-CoV-2 RNAs with a focus on subgenomic mRNAs (sgmRNAs). We show that compared to 10X Genomics Chromium Next GEM Single Cell 3' (10X 3') libraries or 10X Genomics Chromium Next GEM Single Cell V(D)J (10X 5') libraries sequenced with standard read configurations, 10X 5' libraries sequenced with an extended length read 1 (R1) that covers both cell barcode and transcript sequence (termed "10X 5' with extended R1") increase the number of unambiguous reads spanning leader-sgmRNA junction sites. We further present a data processing workflow, single-cell coronavirus sequencing (scCoVseq), which quantifies reads unambiguously assigned to viral sgmRNAs or viral genomic RNA (gRNA). We find that combining 10X 5' with extended R1 library preparation/sequencing and scCoVseq data processing maximizes the number of viral UMIs per cell quantified by scRNA-Seq. Corresponding sgmRNA expression levels are highly correlated with expression in matched bulk RNA-Seq data sets quantified with established tools for SARS-CoV-2 analysis. Using this scRNA-Seq approach, we find that SARS-CoV-2 gene expression is highly correlated across individual infected cells, which suggests that the proportion of viral sgmRNAs remains generally consistent throughout infection. Taken together, these results and corresponding data processing workflow enable robust quantification of coronavirus sgmRNA expression at single-cell resolution, thereby supporting high-resolution studies of viral RNA processes in individual cells. IMPORTANCE Single-cell RNA sequencing (scRNA-Seq) has emerged as a valuable tool to study host-virus interactions, especially for coronavirus disease 2019 (COVID-19). Here we compare the performance of different scRNA-Seq library preparation methods and sequencing strategies to detect SARS-CoV-2 RNAs and develop a data processing workflow to quantify unambiguous sequence reads derived from SARS-CoV-2 genomic RNA and subgenomic mRNAs. After establishing a workflow that maximizes the detection of SARS-CoV-2 subgenomic mRNAs, we explore patterns of SARS-CoV-2 gene expression across cells with variable levels of total viral RNA, assess host gene expression differences between infected and bystander cells, and identify non-canonical and lowly abundant SARS-CoV-2 RNAs. The sequencing and data processing strategies developed here can enhance studies of coronavirus RNA biology at single-cell resolution and thereby contribute to our understanding of viral pathogenesis.

4.
Cell Host Microbe ; 31(10): 1668-1684.e12, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37738983

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) encodes several proteins that inhibit host interferon responses. Among these, ORF6 antagonizes interferon signaling by disrupting nucleocytoplasmic trafficking through interactions with the nuclear pore complex components Nup98-Rae1. However, the roles and contributions of ORF6 during physiological infection remain unexplored. We assessed the role of ORF6 during infection using recombinant viruses carrying a deletion or loss-of-function (LoF) mutation in ORF6. ORF6 plays key roles in interferon antagonism and viral pathogenesis by interfering with nuclear import and specifically the translocation of IRF and STAT transcription factors. Additionally, ORF6 inhibits cellular mRNA export, resulting in the remodeling of the host cell proteome, and regulates viral protein expression. Interestingly, the ORF6:D61L mutation that emerged in the Omicron BA.2 and BA.4 variants exhibits reduced interactions with Nup98-Rae1 and consequently impairs immune evasion. Our findings highlight the role of ORF6 in antagonizing innate immunity and emphasize the importance of studying the immune evasion strategies of SARS-CoV-2.


Asunto(s)
COVID-19 , SARS-CoV-2 , Proteínas Virales , Humanos , COVID-19/virología , Inmunidad Innata , Interferones/genética , Interferones/metabolismo , SARS-CoV-2/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo
5.
Respir Res ; 24(1): 213, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37635251

RESUMEN

BACKGROUND: The airway epithelium is composed of diverse cell types with specialized functions that mediate homeostasis and protect against respiratory pathogens. Human airway epithelial (HAE) cultures at air-liquid interface are a physiologically relevant in vitro model of this heterogeneous tissue and have enabled numerous studies of airway disease. HAE cultures are classically derived from primary epithelial cells, the relatively limited passage capacity of which can limit experimental methods and study designs. BCi-NS1.1, a previously described and widely used basal cell line engineered to express hTERT, exhibits extended passage lifespan while retaining the capacity for differentiation to HAE. However, gene expression and innate immune function in BCi-NS1.1-derived versus primary-derived HAE cultures have not been fully characterized. METHODS: BCi-NS1.1-derived HAE cultures (n = 3 independent differentiations) and primary-derived HAE cultures (n = 3 distinct donors) were characterized by immunofluorescence and single cell RNA-Seq (scRNA-Seq). Innate immune functions were evaluated in response to interferon stimulation and to infection with viral and bacterial respiratory pathogens. RESULTS: We confirm at high resolution that BCi-NS1.1- and primary-derived HAE cultures are largely similar in morphology, cell type composition, and overall gene expression patterns. While we observed cell-type specific expression differences of several interferon stimulated genes in BCi-NS1.1-derived HAE cultures, we did not observe significant differences in susceptibility to infection with influenza A virus and Staphylococcus aureus. CONCLUSIONS: Taken together, our results further support BCi-NS1.1-derived HAE cultures as a valuable tool for the study of airway infectious disease.


Asunto(s)
Células Epiteliales , Interferones , Humanos , Epitelio , Diferenciación Celular , Expresión Génica
6.
mBio ; 14(4): e0100723, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37345956

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the coronavirus disease 2019 (COVID-19) pandemic, drastically modifies infected cells to optimize virus replication. One such modification is the activation of the host p38 mitogen-activated protein kinase (MAPK) pathway, which plays a major role in inflammatory cytokine production, a hallmark of severe COVID-19. We previously demonstrated that inhibition of p38/MAPK activity in SARS-CoV-2-infected cells reduced both cytokine production and viral replication. Here, we combined quantitative genetic screening, genomics, proteomics, and phosphoproteomics to better understand mechanisms underlying the dependence of SARS-CoV-2 on the p38 pathway. We found that p38ß is a critical host factor for SARS-CoV-2 replication in multiple relevant cell lines and that it functions at a step after viral mRNA expression. We identified putative host and viral p38ß substrates in the context of SARS-CoV-2 infection and found that most host substrates have intrinsic antiviral activities. Taken together, this study reveals a unique proviral function for p38ß and supports exploring p38ß inhibitor development as a strategy toward creating a new class of COVID-19 therapies. IMPORTANCE SARS-CoV-2 is the causative agent of the COVID-19 pandemic that has claimed millions of lives since its emergence in 2019. SARS-CoV-2 infection of human cells requires the activity of several cellular pathways for successful replication. One such pathway, the p38 MAPK pathway, is required for virus replication and disease pathogenesis. Here, we applied systems biology approaches to understand how MAPK pathways benefit SARS-CoV-2 replication to inform the development of novel COVID-19 drug therapies.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Citocinas , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Pandemias , SARS-CoV-2/metabolismo , Replicación Viral , Proteína Quinasa 11 Activada por Mitógenos/metabolismo
7.
bioRxiv ; 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36909601

RESUMEN

The airway epithelium is composed of diverse cell types with specialized functions that mediate homeostasis and protect against respiratory pathogens. Human airway epithelial cultures at air-liquid interface (HAE) are a physiologically relevant in vitro model of this heterogeneous tissue, enabling numerous studies of airway disease 1â€"7 . HAE cultures are classically derived from primary epithelial cells, the relatively limited passage capacity of which can limit experimental methods and study designs. BCi-NS1.1, a previously described and widely used basal cell line engineered to express hTERT, exhibits extended passage lifespan while retaining capacity for differentiation to HAE 5 . However, gene expression and innate immune function in HAE derived from BCi-NS1.1 versus primary cells have not been fully characterized. Here, combining single cell RNA-Seq (scRNA-Seq), immunohistochemistry, and functional experimentation, we confirm at high resolution that BCi-NS1.1 and primary HAE cultures are largely similar in morphology, cell type composition, and overall transcriptional patterns. While we observed cell-type specific expression differences of several interferon stimulated genes in BCi-NS1.1 HAE cultures, we did not observe significant differences in susceptibility to infection with influenza A virus and Staphylococcus aureus . Taken together, our results further support BCi-NS1.1-derived HAE cultures as a valuable tool for the study of airway infectious disease.

8.
Methods Mol Biol ; 2651: 285-294, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36892775

RESUMEN

Adenosine deaminase acting on RNA 1 (ADAR1) catalyzes adenosine-to-inosine editing on double-stranded RNA molecules and is involved in regulating cellular responses to endogenous and exogenous RNA. ADAR1 is the primary A-to-I editor of RNA in humans, and the majority of edit sites are found in a class of short interspersed nuclear elements called Alu elements, many of which are located in introns and 3' untranslated regions. Two ADAR1 protein isoforms, p110 (110 kDa) and p150 (150 kDa), are known to be coupled in expression, and decoupling the expression of these isoforms has revealed that the p150 isoform edits a broader range of targets compared to p110. Numerous methods for identification of ADAR1-associated edits have been developed, and we present here a specific method for identification of edit sites associated with individual ADAR1 isoforms.


Asunto(s)
Adenosina Desaminasa , ARN Bicatenario , Humanos , Adenosina Desaminasa/metabolismo , Intrones , Isoformas de Proteínas/genética
9.
Nature ; 615(7951): 305-314, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36813963

RESUMEN

Down's syndrome (DS) presents with a constellation of cardiac, neurocognitive and growth impairments. Individuals with DS are also prone to severe infections and autoimmunity including thyroiditis, type 1 diabetes, coeliac disease and alopecia areata1,2. Here, to investigate the mechanisms underlying autoimmune susceptibility, we mapped the soluble and cellular immune landscape of individuals with DS. We found a persistent elevation of up to 22 cytokines at steady state (at levels often exceeding those in patients with acute infection) and detected basal cellular activation: chronic IL-6 signalling in CD4 T cells and a high proportion of plasmablasts and CD11c+TbethighCD21low B cells (Tbet is also known as TBX21). This subset is known to be autoimmune-prone and displayed even greater autoreactive features in DS including receptors with fewer non-reference nucleotides and higher IGHV4-34 utilization. In vitro, incubation of naive B cells in the plasma of individuals with DS or with IL-6-activated T cells resulted in increased plasmablast differentiation compared with control plasma or unstimulated T cells, respectively. Finally, we detected 365 auto-antibodies in the plasma of individuals with DS, which targeted the gastrointestinal tract, the pancreas, the thyroid, the central nervous system, and the immune system itself. Together, these data point to an autoimmunity-prone state in DS, in which a steady-state cytokinopathy, hyperactivated CD4 T cells and ongoing B cell activation all contribute to a breach in immune tolerance. Our findings also open therapeutic paths, as we demonstrate that T cell activation is resolved not only with broad immunosuppressants such as Jak inhibitors, but also with the more tailored approach of IL-6 inhibition.


Asunto(s)
Autoinmunidad , Linfocitos T CD4-Positivos , Citocinas , Síndrome de Down , Humanos , Autoanticuerpos/inmunología , Linfocitos B/citología , Linfocitos B/inmunología , Linfocitos B/metabolismo , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/inmunología , Citocinas/análisis , Citocinas/inmunología , Susceptibilidad a Enfermedades , Síndrome de Down/inmunología , Síndrome de Down/fisiopatología , Interleucina-6/inmunología , Receptores de Complemento 3d
10.
bioRxiv ; 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-34845443

RESUMEN

Single cell RNA sequencing (scRNA-Seq) studies have provided critical insight into the pathogenesis of Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2), the causative agent of COronaVIrus Disease 2019 (COVID-19). scRNA-Seq workflows are generally designed for the detection and quantification of eukaryotic host mRNAs and not viral RNAs. Here, we compare different scRNA-Seq methods for their ability to quantify and detect SARS-CoV-2 RNAs with a focus on subgenomic mRNAs (sgmRNAs). We present a data processing strategy, single cell CoronaVirus sequencing (scCoVseq), which quantifies reads unambiguously assigned to sgmRNAs or genomic RNA (gRNA). Compared to standard 10X Genomics Chromium Next GEM Single Cell 3' (10X 3') and Chromium Next GEM Single Cell V(D)J (10X 5') sequencing, we find that 10X 5' with an extended read 1 (R1) sequencing strategy maximizes the detection of sgmRNAs by increasing the number of unambiguous reads spanning leader-sgmRNA junction sites. Using this method, we show that viral gene expression is highly correlated across cells suggesting a relatively consistent proportion of viral sgmRNA production throughout infection. Our method allows for quantification of coronavirus sgmRNA expression at single-cell resolution, and thereby supports high resolution studies of the dynamics of coronavirus RNA synthesis.

11.
bioRxiv ; 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36299428

RESUMEN

We and others have previously shown that the SARS-CoV-2 accessory protein ORF6 is a powerful antagonist of the interferon (IFN) signaling pathway by directly interacting with Nup98-Rae1 at the nuclear pore complex (NPC) and disrupting bidirectional nucleo-cytoplasmic trafficking. In this study, we further assessed the role of ORF6 during infection using recombinant SARS-CoV-2 viruses carrying either a deletion or a well characterized M58R loss-of-function mutation in ORF6. We show that ORF6 plays a key role in the antagonism of IFN signaling and in viral pathogenesis by interfering with karyopherin(importin)-mediated nuclear import during SARS-CoV-2 infection both in vitro , and in the Syrian golden hamster model in vivo . In addition, we found that ORF6-Nup98 interaction also contributes to inhibition of cellular mRNA export during SARS-CoV-2 infection. As a result, ORF6 expression significantly remodels the host cell proteome upon infection. Importantly, we also unravel a previously unrecognized function of ORF6 in the modulation of viral protein expression, which is independent of its function at the nuclear pore. Lastly, we characterized the ORF6 D61L mutation that recently emerged in Omicron BA.2 and BA.4 and demonstrated that it is able to disrupt ORF6 protein functions at the NPC and to impair SARS-CoV-2 innate immune evasion strategies. Importantly, the now more abundant Omicron BA.5 lacks this loss-of-function polymorphism in ORF6. Altogether, our findings not only further highlight the key role of ORF6 in the antagonism of the antiviral innate immune response, but also emphasize the importance of studying the role of non-spike mutations to better understand the mechanisms governing differential pathogenicity and immune evasion strategies of SARS-CoV-2 and its evolving variants. ONE SENTENCE SUMMARY: SARS-CoV-2 ORF6 subverts bidirectional nucleo-cytoplasmic trafficking to inhibit host gene expression and contribute to viral pathogenesis.

12.
Curr Protoc ; 2(6): e453, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35671174

RESUMEN

A diverse collection of viral pathogens target airway epithelial cells for infection, with effects ranging from mild upper respiratory tract symptoms to death of the infected individual. Among these pathogens are recently discovered and/or emergent viruses that sometimes fail to infect commonly used, immortalized cell lines and for which infection phenotypes in the respiratory tract remain unknown. Human airway epithelial cultures have been developed over the past several decades and have proven to be a useful model system in culturing hard-to-grow viruses and assaying various features of infection in a physiologically relevant setting. This article includes methods for the generation of well-differentiated human airway epithelial cell cultures at air-liquid interface that recapitulate the mucosal epithelium of the trachea/bronchus in vivo. We further detail inoculation of these cultures with respiratory viruses-specifically rhinovirus, influenza virus, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-and provide a protocol for the detection of double-stranded RNA or viral antigen-positive cells by immunofluorescence microscopy. These techniques, together with a post-imaging analysis, can be applied to characterize the efficiency of infection and kinetics of spread within the airway epithelium. Furthermore, these methods can be utilized in conjunction with antibodies against cellular targets to determine cell tropism and colocalization with specific host factors during infection. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Generation of human airway epithelial cultures at air-liquid interface (HAE-ALI) Basic Protocol 2: Viral inoculation of HAE-ALI Basic Protocol 3: Immunofluorescence (IF)-based detection of infected cells in HAE-ALI.


Asunto(s)
COVID-19 , SARS-CoV-2 , Células Epiteliales , Técnica del Anticuerpo Fluorescente , Humanos , Sistema Respiratorio
13.
PLoS Pathog ; 18(4): e1010464, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35421191

RESUMEN

Interferons establish an antiviral state through the induction of hundreds of interferon-stimulated genes (ISGs). The mechanisms and viral specificities for most ISGs remain incompletely understood. To enable high-throughput interrogation of ISG antiviral functions in pooled genetic screens while mitigating potentially confounding effects of endogenous interferon and antiproliferative/proapoptotic ISG activities, we adapted a CRISPR-activation (CRISPRa) system for inducible ISG expression in isogenic cell lines with and without the capacity to respond to interferons. We used this platform to screen for ISGs that restrict SARS-CoV-2. Results included ISGs previously described to restrict SARS-CoV-2 and novel candidate antiviral factors. We validated a subset of these by complementary CRISPRa and cDNA expression experiments. OAS1, a top-ranked hit across multiple screens, exhibited strong antiviral effects against SARS-CoV-2, which required OAS1 catalytic activity. These studies demonstrate a high-throughput approach to assess antiviral functions within the ISG repertoire, exemplified by identification of multiple SARS-CoV-2 restriction factors.


Asunto(s)
2',5'-Oligoadenilato Sintetasa , COVID-19 , Interferones , 2',5'-Oligoadenilato Sintetasa/genética , 2',5'-Oligoadenilato Sintetasa/metabolismo , Antivirales/farmacología , COVID-19/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Humanos , Interferones/metabolismo , SARS-CoV-2/genética
14.
Cell Rep ; 38(11): 110508, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35247306

RESUMEN

Concerns that infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of coronavirus disease 2019 (COVID-19), may cause new-onset diabetes persist in an evolving research landscape, and precise risk assessment is hampered by, at times, conflicting evidence. Here, leveraging comprehensive single-cell analyses of in vitro SARS-CoV-2-infected human pancreatic islets, we demonstrate that productive infection is strictly dependent on the SARS-CoV-2 entry receptor ACE2 and targets practically all pancreatic cell types. Importantly, the infection remains highly circumscribed and largely non-cytopathic and, despite a high viral burden in infected subsets, promotes only modest cellular perturbations and inflammatory responses. Similar experimental outcomes are also observed after islet infection with endemic coronaviruses. Thus, the limits of pancreatic SARS-CoV-2 infection, even under in vitro conditions of enhanced virus exposure, challenge the proposition that in vivo targeting of ß cells by SARS-CoV-2 precipitates new-onset diabetes. Whether restricted pancreatic damage and immunological alterations accrued by COVID-19 increase cumulative diabetes risk, however, remains to be evaluated.


Asunto(s)
COVID-19 , Diabetes Mellitus , Células Secretoras de Insulina , Humanos , Páncreas , SARS-CoV-2
15.
J Virol ; 95(23): e0125721, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34523966

RESUMEN

SARS-CoV-2, the etiological agent of COVID-19, is characterized by a delay in type I interferon (IFN-I)-mediated antiviral defenses alongside robust cytokine production. Here, we investigate the underlying molecular basis for this imbalance and implicate virus-mediated activation of NF-κB in the absence of other canonical IFN-I-related transcription factors. Epigenetic and single-cell transcriptomic analyses show a selective NF-κB signature that was most prominent in infected cells. Disruption of NF-κB signaling through the silencing of the NF-κB transcription factor p65 or p50 resulted in loss of virus replication that was rescued upon reconstitution. These findings could be further corroborated with the use of NF-κB inhibitors, which reduced SARS-CoV-2 replication in vitro. These data suggest that the robust cytokine production in response to SARS-CoV-2, despite a diminished IFN-I response, is the product of a dependency on NF-κB for viral replication. IMPORTANCE The COVID-19 pandemic has caused significant mortality and morbidity around the world. Although effective vaccines have been developed, large parts of the world remain unvaccinated while new SARS-CoV-2 variants keep emerging. Furthermore, despite extensive efforts and large-scale drug screenings, no fully effective antiviral treatment options have been discovered yet. Therefore, it is of the utmost importance to gain a better understanding of essential factors driving SARS-CoV-2 replication to be able to develop novel approaches to target SARS-CoV-2 biology.


Asunto(s)
COVID-19/metabolismo , Citocinas/metabolismo , Interferón Tipo I/metabolismo , SARS-CoV-2 , Factor de Transcripción ReIA/metabolismo , Transcriptoma , Replicación Viral , Células A549 , Animales , COVID-19/virología , Chlorocebus aethiops , Epigenómica , Regulación de la Expresión Génica , Células HEK293 , Células HeLa , Interacciones Microbiota-Huesped , Humanos , Transducción de Señal , Análisis de la Célula Individual , Factor de Transcripción ReIA/antagonistas & inhibidores , Factor de Transcripción ReIA/genética , Factores de Transcripción/metabolismo , Células Vero
16.
Hepatology ; 74(3): 1148-1163, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33713356

RESUMEN

BACKGROUND AND AIMS: Equine hepacivirus (EqHV) is phylogenetically the closest relative of HCV and shares genome organization, hepatotropism, transient or persistent infection outcome, and the ability to cause hepatitis. Thus, EqHV studies are important to understand equine liver disease and further as an outbred surrogate animal model for HCV pathogenesis and protective immune responses. Here, we aimed to characterize the course of EqHV infection and associated protective immune responses. APPROACH AND RESULTS: Seven horses were experimentally inoculated with EqHV, monitored for 6 months, and rechallenged with the same and, subsequently, a heterologous EqHV. Clearance was the primary outcome (6 of 7) and was associated with subclinical hepatitis characterized by lymphocytic infiltrate and individual hepatocyte necrosis. Seroconversion was delayed and antibody titers waned slowly. Clearance of primary infection conferred nonsterilizing immunity, resulting in shortened duration of viremia after rechallenge. Peripheral blood mononuclear cell responses in horses were minimal, although EqHV-specific T cells were identified. Additionally, an interferon-stimulated gene signature was detected in the liver during EqHV infection, similar to acute HCV in humans. EqHV, as HCV, is stimulated by direct binding of the liver-specific microRNA (miR), miR-122. Interestingly, we found that EqHV infection sequesters enough miR-122 to functionally affect gene regulation in the liver. This RNA-based mechanism thus could have consequences for pathology. CONCLUSIONS: EqHV infection in horses typically has an acute resolving course, and the protective immune response lasts for at least a year and broadly attenuates subsequent infections. This could have important implications to achieve the primary goal of an HCV vaccine; to prevent chronicity while accepting acute resolving infection after virus exposure.


Asunto(s)
Regulación de la Expresión Génica , Hepacivirus/inmunología , Hepatitis Viral Animal/inmunología , Hígado/inmunología , MicroARNs/inmunología , Linfocitos T/inmunología , Animales , Progresión de la Enfermedad , Hepacivirus/metabolismo , Hepatitis Viral Animal/genética , Caballos , Hígado/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Transcriptoma
17.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33723056

RESUMEN

Human adenosine deaminase acting on RNA 1 (ADAR1) catalyzes adenosine-to-inosine deamination reactions on double-stranded RNA molecules to regulate cellular responses to endogenous and exogenous RNA. Defective ADAR1 editing leads to disorders such as Aicardi-Goutières syndrome, an autoinflammatory disease that manifests in the brain and skin, and dyschromatosis symmetrica hereditaria, a skin pigmentation disorder. Two ADAR1 protein isoforms, p150 (150 kDa) and p110 (110 kDa), are expressed and can edit RNA, but the contribution of each isoform to the editing landscape remains unclear, largely because of the challenges in expressing p150 without p110. In this study, we demonstrate that p110 is coexpressed with p150 from the canonical p150-encoding mRNA due to leaky ribosome scanning downstream of the p150 start codon. The presence of a strong Kozak consensus context surrounding the p110 start codon suggests the p150 mRNA is optimized to leak p110 alongside expression of p150. To reduce leaky scanning and translation initiation at the p110 start codon, we introduced synonymous mutations in the coding region between the p150 and p110 start codons. Cells expressing p150 constructs with these mutations produced significantly reduced levels of p110. Editing analysis of total RNA from ADAR1 knockout cells reconstituted separately with modified p150 and p110 revealed that more than half of the A-to-I edit sites are selectively edited by p150, and the other half are edited by either p150 or p110. This method of isoform-selective editing analysis, making use of the modified p150, has the potential to be adapted for other cellular contexts.


Asunto(s)
Adenosina Desaminasa/genética , Regulación de la Expresión Génica , Isoformas de Proteínas/genética , Edición de ARN , Proteínas de Unión al ARN/genética , Enfermedades Autoinmunes del Sistema Nervioso/genética , Susceptibilidad a Enfermedades , Técnicas de Inactivación de Genes , Predisposición Genética a la Enfermedad , Humanos , Malformaciones del Sistema Nervioso/genética , Trastornos de la Pigmentación/congénito , Trastornos de la Pigmentación/genética
18.
BMC Biol ; 19(1): 13, 2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33482825

RESUMEN

BACKGROUND: Traditional laboratory model organisms represent a small fraction of the diversity of multicellular life, and findings in any given experimental model often do not translate to other species. Immunology research in non-traditional model organisms can be advantageous or even necessary, such as when studying host-pathogen interactions. However, such research presents multiple challenges, many stemming from an incomplete understanding of potentially species-specific immune cell types, frequencies, and phenotypes. Identifying and characterizing immune cells in such organisms is frequently limited by the availability of species-reactive immunophenotyping reagents for flow cytometry, and insufficient prior knowledge of cell type-defining markers. RESULTS: Here, we demonstrate the utility of single-cell RNA sequencing (scRNA-Seq) to characterize immune cells for which traditional experimental tools are limited. Specifically, we used scRNA-Seq to comprehensively define the cellular diversity of equine peripheral blood mononuclear cells (PBMC) from healthy horses across different breeds, ages, and sexes. We identified 30 cell type clusters partitioned into five major populations: monocytes/dendritic cells, B cells, CD3+PRF1+ lymphocytes, CD3+PRF1- lymphocytes, and basophils. Comparative analyses revealed many cell populations analogous to human PBMC, including transcriptionally heterogeneous monocytes and distinct dendritic cell subsets (cDC1, cDC2, plasmacytoid DC). Remarkably, we found that a majority of the equine peripheral B cell compartment is comprised of T-bet+ B cells, an immune cell subpopulation typically associated with chronic infection and inflammation in human and mouse. CONCLUSIONS: Taken together, our results demonstrate the potential of scRNA-Seq for cellular analyses in non-traditional model organisms and form the basis for an immune cell atlas of horse peripheral blood.


Asunto(s)
Caballos/sangre , Leucocitos Mononucleares/clasificación , Animales , Linfocitos B/clasificación , Leucocitos Mononucleares/metabolismo , Análisis de Secuencia de ARN/veterinaria , Análisis de la Célula Individual/veterinaria
19.
Cell ; 184(1): 92-105.e16, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33147445

RESUMEN

To better understand host-virus genetic dependencies and find potential therapeutic targets for COVID-19, we performed a genome-scale CRISPR loss-of-function screen to identify host factors required for SARS-CoV-2 viral infection of human alveolar epithelial cells. Top-ranked genes cluster into distinct pathways, including the vacuolar ATPase proton pump, Retromer, and Commander complexes. We validate these gene targets using several orthogonal methods such as CRISPR knockout, RNA interference knockdown, and small-molecule inhibitors. Using single-cell RNA-sequencing, we identify shared transcriptional changes in cholesterol biosynthesis upon loss of top-ranked genes. In addition, given the key role of the ACE2 receptor in the early stages of viral entry, we show that loss of RAB7A reduces viral entry by sequestering the ACE2 receptor inside cells. Overall, this work provides a genome-scale, quantitative resource of the impact of the loss of each host gene on fitness/response to viral infection.


Asunto(s)
COVID-19/genética , COVID-19/virología , Interacciones Huésped-Patógeno , SARS-CoV-2/fisiología , Células A549 , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/virología , Enzima Convertidora de Angiotensina 2/metabolismo , Vías Biosintéticas , COVID-19/metabolismo , Colesterol/biosíntesis , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Endosomas/metabolismo , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Técnicas de Inactivación de Genes/métodos , Estudio de Asociación del Genoma Completo , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Interferencia de ARN , SARS-CoV-2/crecimiento & desarrollo , Análisis de la Célula Individual , Carga Viral/efectos de los fármacos , Proteínas de Unión al GTP rab/genética , Proteínas de Unión a GTP rab7
20.
Stem Cell Res Ther ; 11(1): 524, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-33276815

RESUMEN

BACKGROUND: The efficacy of mesenchymal stromal cell (MSC) therapy is thought to depend on the intrinsic heterogeneity of MSC cultures isolated from different tissue sources as well as individual MSCs isolated from the same tissue source, neither of which is well understood. To study this, we used MSC cultures isolated from horses. The horse is recognized as a physiologically relevant large animal model appropriate for translational MSC studies. Moreover, due to its large size the horse allows for the simultaneous collection of adequate samples from multiple tissues of the same animal, and thus, for the unique collection of donor matched MSC cultures from different sources. The latter is much more challenging in mice and humans due to body size and ethical constraints, respectively. METHODS: In the present study, we performed single-cell RNA sequencing (scRNA-seq) on primary equine MSCs that were collected from three donor-matched tissue sources; adipose tissue (AT), bone marrow (BM), and peripheral blood (PB). Based on transcriptional differences detected with scRNA-seq, we performed functional experiments to examine motility and immune regulatory function in distinct MSC populations. RESULTS: We observed both inter- and intra-source heterogeneity across the three sources of equine MSCs. Functional experiments demonstrated that transcriptional differences correspond with phenotypic variance in cellular motility and immune regulatory function. Specifically, we found that (i) differential expression of junctional adhesion molecule 2 (JAM2) between MSC cultures from the three donor-matched tissue sources translated into altered cell motility of BM-derived MSCs when RNA interference was used to knock down this gene, and (ii) differences in C-X-C motif chemokine ligand 6 (CXCL6) expression in clonal MSC lines derived from the same tissue source correlated with the chemoattractive capacity of PB-derived MSCs. CONCLUSIONS: Ultimately, these findings will enhance our understanding of MSC heterogeneity and will lead to improvements in the therapeutic potential of MSCs, accelerating the transition from bench to bedside.


Asunto(s)
Células Madre Mesenquimatosas , Animales , Células de la Médula Ósea , Diferenciación Celular , Movimiento Celular , Proliferación Celular , Células Cultivadas , Caballos , Ratones , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...